RDCH 702 Lecture 4: Orbitals and energetics

- Molecular symmetry
- Bonding and structure
- Molecular orbital theory
- Crystal field theory
- Ligand field theory

Provide fundamental understanding of chemistry dictating radionuclide complexes

- Structure based on bonding
 - Coordination important in defining structure
 - → Structure related to spectroscopic behavior
 - → Electron configuration important in structure
 - * d⁸ are square planar
 - * d⁰ and d¹⁰ tetrahedral

Molecular symmetry

- Evaluation of point groups
 - **Description** of symmetry present in molecules \rightarrow Axis \rightarrow Planes →Inversion \rightarrow Rotation
- Use with group theory to determine spectroscopic properties

Non-linear, less than 2 unique C₃ axis

Point Groups

- H₂O point group
 - C_{2v} symmetry
 - Symmetry elements
 - → E, C₂ (180° rotation), 2 vertical mirror planes (σ_v)

* E, C₂, σ_v , σ_v

- NH₃ point group
 - C_{3v} point group
 - Elements
 - → E, C₃ (each N-H), three vertical mirror plane through each N-H (3σ_v)

* E, C_{3,} $3\sigma_v$

• Apply to identification tree

Symmetry and spectroscopy

C _{2v}	Е	C ₂	σ _v (xz)	σ _v (yz)		
A ₁	1	1	1	1	Z	x ² , y ² , z ²
A ₂	1	1	-1	-1	R _z	ху
B ₁	1	-1	1	-1	x, R _y	xz
B ₂	1	-1	-1	1	y, R _x	yz

- a_1 vibration generates a changing dipole moment in the z-direction
- b₁ vibration generates a changing dipole moment in the x-direction
- b₂ vibration generates a changing dipole moment in the y-direction
- a₂ vibration does not generate a changing dipole moment in any direction (no 'x', 'y' or 'z' in the a2 row).
 - a₁, b₁ and b₂ vibrations provide changes dipole moments and are IR active
 - a₂ vibrations have no dipole moments
 → IR inactive

Coordination number

- Geometry strongly influence by coordination number
 - Can assess information on potential structure and geometry from coordination number (CN)

Η

- CN=5
- Interconvertibility between geometries
 - Compounds can vary between shapes
 - Trigonal bipyramid seems to be more common
 → Common with metal pentachloride species

- 2 Linear $(D_{\infty h})$ -Bent (C_{2v})
- 3 Planar (D_{3h}) Pyramidal (C_{3v}) Some T-shaped forms (C_{2v})
- 4 Tetrahedral (T_d) Square geometry (C_{4h}) One lone pair (C_{2y})
- 5 Trigonal bipyramid (D_{3h}) Square pyramid (C_{4v})

Coordination Number

- Coordination number 6
- Very common coordination number
 - Ligands at vertices of octahedron or distorted octahedron
 - →Octahedron (O_h)
 - \rightarrow Tetragonal octahedron (D_{4h})
 - * Elongated or contracted long z axis
 - \rightarrow Rhombic (D_{2h})
 - * Changes along 2 axis
 - →Trigonal distortion (D_{3d})

Higher coordination: Relevant for actinides

7 coordination

Pentagonal Bipyramidal, Capped **Trigonal Prismatic and Capped**

Octahedral.

http://www.d.umn.edu/~ pkiprof/ChemWebV2/C oordination/CN8.html

Mary B

8 coordination: Cubic structure, the Square Antiprism, Dodecahedron

9 coordination: Tricapped trigonal prismatic

Hard and soft metals and ligands

- Based on Lewis acid definition
 - Ligand acts as base
 - \rightarrow donates electron pair to metal ion
- Hard metal ion interact with hard bases
 - Hard ligands N, O, F
 - Soft ligands P, S, Cl
 - → Ligand hardness decreases down a group
- Hard metals
 - High positive charges
 - Small radii
 - Closed shells or half filled configurations
- Soft metals
 - Low positive charges
 - Large ionic radius
 - Non-closed shell configurations
 - \rightarrow Tend to be on right side of transition series
- Lanthanides and actinides are hard
 - Actinides are softer than lanthanides
 - \rightarrow Ligands with soft groups can be used for actinide/lanthanide separations

H^+	Na^+	K ⁺	Be ²⁺	Mg ²⁺
Ca ²⁺	Mo ³⁺	Mn^{2+}	Al ³⁺	Se ³⁺
In ³⁺	Cr ³⁺	Co ³⁺	Fe ³⁺	Ti ⁴⁺
Zr ⁴⁺	U ⁴⁺	Ce ³⁺	Sn ⁴⁺	BF_3
AICI ₃	AlH ₃	SO_3	NO2 ⁺	CO_2

Hard

$$Fe^{2+}$$
 Co^{2+}
 Ni^{2+}
 Cu^{2+}
 Zn^{2+}
 Pb^{2+}
 Sn^{2+}
 Sb^{3+}
 Bi^{3+}
 Ir^{3+}
 $B(CH_3)_3$
 SO_2
 Ru^{2+}
 $R \xrightarrow{R} \xrightarrow{-} -R$
 $R \xrightarrow{-} \xrightarrow{+} +$

Intermediate

Chelation and stability

- Ligands with more than 1 complexing functional group
 - Carbonate, ethylenediamine
 - Enhanced stability through chelation effect
 - ethylenediamine binding stronger than 2 ammonia groups
 - →Bidentate
 - → Tridentate
 - Ligands can wrap around metal ion forming stronger complex

the [Cu(EDTA)]²⁻ ion

Effective atomic number

- Metal bonding can be described with effective atomic number
 - Number of electrons surrounding metal is effective atomic number
 - →Transitions metal have 9 possible bonds

* 5 d, 3p, 1 s % 18 electrons

- Possible to have effective atomic number different than 18
 - →Few d electrons
 - →Electronegative ligands

Effective atomic number

- 16 electron
 - Square planar
 - d⁸ configuration (Au, Pt)
- Greater than 18 electron
 - 8-10 d electrons
- Expand metal-ligand interactions to exploit bonding and geometry
 - Molecular orbital theory
 - Crystal field theory
 - Ligand field theory

TABLE 6-3. EAN VALUES FOR SEVERAL TRANSITION-METAL COMPLEXES

Complex	Metal Electrons	Ligand-donor Electrons	EAN
VCl ₄	1	8	9
TaF_7^{2-}	0	14	14
ZrF_7^{3-}	0	14	14
$Ni(CN)_4^{2-}$	8	8	16
$Pt(NH_3)_2Cl_2$	8	8	16
$Au(NO_3)_4^-$	8	8	16
MnF_6^{4-}	5	12	17
$Fe(CN)_6^{3-}$	5	12	17
$Co(NH_3)_{6}^{3+}$	6	12	18
$Cr(CO)_6$	6	12	18
$Fe(CO)_5$	8	10	18
Ni(CO) ₄	10	8	18
$Co(NO_3)_3$	6	12	18
Re(CO) ₅ NO ₃	6	12	18
$Ni(H_2O)_6^{2+}$	8	12	20
NiF_6^{4-}	8	12	20

Molecular orbital theory

- Molecular orbitals are comprised from the overlap of atomic orbitals
- Number of molecular orbitals equals the number of combined atomic orbitals
- Different type of molecular orbitals
 - bonding orbital (lower energy)
 - Non-bonding (same energy as atomic orbitals)
 - Anti-bonding orbital (higher energy)
- Electrons enter the lowest orbital available
 - maximum number of electrons in an orbital is 2 (Pauli Exclusion Principle)
 - Electrons spread out before pairing up (Hund's Rule)

Molecular orbital

A Li2 bond order = 1

B Be₂ bond order = 0

- Gerade and ungerade
- N molecular orbitals from N atomic orbitals
 - N=8 in period 2

Molecular orbitals

2σ_u

Molecular orbitals

- Mixture of different atoms
 - Some bonding characteristics dominate
 - Nonbonding orbitals
 → No Pi from H
- High occupied electron orbital
- Lowest unoccupied electron orbital
- Bond order
 - Overall shared electron
 - **B=0.5(n-n*)**

Symmetry adapted orbitals

- Combination of orbitals with symmetry considerations
- If molecule has symmetry degenerate atomic orbitals with similar atomic energy can be grouped in linear combinations
 - groups are known as symmetryadapted linear combinations

Crystal Field Theory

- Behavior of electrons with ligands
 - changes degenerate states
 → d and f electrons
- Lone pair modeled as point
 - Repels electrons in d or f orbital
 - d orbitals have energy differences due to point
 - → Results in ligand field splitting
 - * About 10 % of metalligand interaction
 - * e and t orbitals
 - → Ignores covalent contribution
- Energy difference is ligand field splitting parameter (Δ_0)
 - Can be determined from absorption spectrum
 - $\rightarrow e_g \leftarrow t_{2g}$ transition

Crystal Field Theory

- $Ti(OH_2)_6^{3+}$
 - Absorbance at 500 nm, 20000 cm⁻¹
 - 1000 cm⁻¹ = 11.96 kJ/mol
 - $\rightarrow \Delta_0 = 239.2 \text{ kJ/mol}$
 - Δ_0 found to vary with ligand
 - → For metal ion increases with oxidation state and increases down a group
- $I^{-} < Br^{-} < \underline{SCN^{-}} \sim C^{I-} < F^{-} < OH \sim \underline{ONO} < C_2O_4^{-2} < H_2O < \underline{NCS^{-}} < EDTA^{4-} < NH_3 \sim pyr \sim en < bipy < phen < CN^{-} \sim CO$

Table 7.3 Ligand-field splitting parameters Δ_O of ML_6 complexes*

	lons	Ligands					
		CI —	H ₂ O	NH_3	en	CN -	
d^3	Cr ³⁺	13.7	17.4	21.5	21.9	26.6	
d^5	Mn ²⁺	7.5	8.5		10.1	30	
	Fe ³⁺	11.0	14.3			(35)	
d^6	Fe ²⁺		10.4			(32.8)	
	Co^{3+}		(20.7)	(22.9)	(23.2)	(34.8)	
	Rh ³⁺	(20.4)	(27.0)	(34.0)	(34.6)	(45.5)	
d^8	Ni ²⁺	7.5	8.5	10.8	11.5		

*Values are in multiples of 1000 cm^{-1} ; entries in parentheses are for low-spin complexes. Source: H.B. Gray, *Electrons and chemical bonding*. Benjamin, Menlo Park (1965).

Crystal field theory

- Ligand field stabilization energies
 - t_{2g} stabilized (40 % of Δ_0)
 - e_g increase energy (60 % of Δ_0) \rightarrow LFSE=(-0.4 t_{2g} + 0.6 e_g) Δ_0 \rightarrow LFSE few % of energy

d^n	Example	Octa	ahedral					Tetra	hedral
				N	LFSE			N	LFSE
d^0	Ca^{2+} , Sc^{3+}			0	0			0	0
d^1	Ti ^{3 +}			1	0.4			1	0.6
d^2	V^{3+}			2	0.8			2	1.2
d^3	Cr ³⁺ , V ²⁺			3	1.2			3	0.8
		Stro	ng-field			Wea	ak-field		
d^4	Cr ²⁺ , Mn ³⁺	2	1.6			4	0.6	4	0.4
d^5	Mn ²⁺ , Fe ³⁺	1	2.0			5	0	5	0
d^6	Fe^{2+} , Co^{3+}	0	2.4			4	0.4	4	0.6
d^7	Co^{2+}	1	1.8			3	0.8	3	1.2
d^8	Ni ^{2 +}			2	1.2			2	0.8
d^9	Cu^{2+}			1	0.6			1	0.4
d^{10}	Cu^+ , Zn^{2+}			0	0			0	0

Table 7.4 Ligand-field stabilization energies (absolute values)*

*N is the number of unpaired electrons; LFSE is in units of $\Delta_{\rm O}$ for octahedra or $\Delta_{\rm T}$ for tetrahedra; the calculated relation is $\Delta_{\rm T} \approx \frac{4}{9} \Delta_{\rm O}$.

Crystal Field Theory

Crystal Field Theory

- Magnetic properties
 - Determination of spin state
 - \rightarrow Diamagnetic
 - * Move out of a magnetic field
 - \rightarrow Paramagnetic
 - * Move into a magnetic field
 - Dipole moment
 - → Spin only paramagnetism due to quenching of orbital angular momentum with ligand
 - * $\mu = [N(N+2)]^{1/2} \mu_B$; with $\mu_B = 9.274E-24 JT^{-1}$ and N number of unpaired electrons
 - ✗ For d⁶ N= 4 or 0, depending on spin
- Accounts for observations on trends
 - Ionic radius

radic 7.5 calculated spin-only magnetic moments	Table 7.5	Calculated	spin-only	magnetic	moments
---	-----------	------------	-----------	----------	---------

lon	N	S	$\mu/\mu_{ m B}$		
			Calculated	Experiment	
Ti ³⁺	1	$\frac{1}{2}$	1.73	1.7-1.8	
V^{3+}	2	ĩ	2.83	2.7-2.9	
Cr^{3+}	3	$\frac{3}{2}$	3.87	3.8	
Mn ³⁺	4	$\tilde{2}$	4.90	4.8-4.9	
Fe ³⁺	5	$\frac{5}{2}$	5.92	5.9	

Crystal Field Theory Spherical

- **T**_d
 - Weak field splitting
 - e lower energy than t
 - → Based on orbital spatial distributions
- Tetragonal complex
 - Splitting into 4 levels
 - Can distort into square planar
 - \rightarrow 4d⁸ and 5d⁸
- Jahn-Teller effect
 - Distortion of geometry to achieve energy stabilization (see previous)
 - → Energy of distorted complex lower

Ligand Field Theory

- Describes bonding and geometry of coordination complexes
 - Use of molecular orbital theory for transition metals
 - →Correlated with geometry to identify similar bonds
 - →Includes covalent metal-ligand interactions
 - * Overlap of ligand and metal orbitals
 - * Enhanced understanding of origin of energy separation

Ligand Field Theory d orbital hybrid

• O_h complexes

A

- **Six similar bonds, nine valence orbitals**
- To make six similar bonds, mixing must occur
 - \rightarrow Hybridization of s, p, and 2 d orbitals

• Interaction of d orbitals with bonding ligand results in observed properties (magnetic, color)

Ligand Field Theory

- nd, n+1s, and n+1p orbitals on the metal overlap with one orbital on each of the six ligands
 - forms 15 molecular orbitals
- Six are bonding
 - energies are lower than original atomic orbitals
- Six are antibonding with higher energy
- Three are nonbonding
- Ligand-field theory describes how s,p, and d orbitals on the metal to overlap with orbitals on the ligand

- **Stems for SALC**
 - Sigma
 - **Combine sigma orbitals for each** set
 - \rightarrow t_{2g} has no sigma For molecular orbital combine
 - $\rightarrow C_M \psi_M + C_L \psi_{La1g}$ **Pi bonding**
 - - \rightarrow Donor decrease Δ_{o}
 - Acceptor increases \rightarrow
 - * Related to electrochemical series

Charge transfer

- Allowed transitions in UV-Visible
 - Ligand to metal
 - Metal to ligand
- Related to redox of multiplands
 - $MnO_4^ \rightarrow O$ ligands to Mn m
- Absorption of radiation involution the transfer of an electron from the donor to an orbital assorted with the acceptor.
- Molar absorptivities from charge-there absorption are large (greater that 10,000 L mol⁻¹ cm⁻

Overview

- Bonding and structure relationships
 - Understand how coordination number is related to geometry
- Hard and soft metal interactions
 - First order estimation of interactions
- Modeling of orbitals
 - Molecular orbital theory
 - Charge Transfer
 - Ligand field theory
 - →Utility of each concept

→Exploration of energy difference

Questions

- What are the possible geometry for a 5 coordinate compound?
- Which ligands would be expected to bind strongly with Fe? With Hg?
- What is the chelate effect?
- What is the relationship between molecular orbital theory, crystal field theory, and ligand field theory?
- What does IR and UV-Visible spectroscopy inform about a chemical species?
- What accounts for color changes in metal-ligand complexes?

Questions

- Comment on blog
- Respond to PDF Quiz 4